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Bootstrap-Optimised Regularised Image
Reconstruction for Emission Tomography

Andrew J. Reader and Sam Ellis

Abstract— In emission tomography, iterative image
reconstruction from noisy measured data usually results
in noisy images, and so regularisation is often used to
compensate for noise. However, in practice, an appropriate,
automatic and precise specification of the strength of
regularisation for image reconstruction from a given noisy
measured dataset remains unresolved.Existingapproaches
are either empirical approximations with no guarantee
of generalisation, or else are computationally intensive
cross-validation methods requiring full reconstructions
for a limited set of preselected regularisation strengths.
In contrast, we propose a novel methodology embedded
within iterative image reconstruction, using one or more
bootstrapped replicates of the measured data for precise
optimisation of the regularisation. The approach uses a
conventional unregularised iterative update of a current
image estimate from the noisy measured data, and then also
uses the bootstrap replicate to obtain a bootstrap update
of the current image estimate. The method then seeks
the regularisation hyperparameters which, when applied
to the bootstrap update of the image, lead to a best fit
of the regularised bootstrap update to the conventional
measured data update. This corresponds to estimating
the degree of regularisation needed in order to map the
noisy update to a model of the mean of an ensemble of
noisy updates. For a given regularised objective function
(e.g. penalised likelihood), no hyperparameter selection
or tuning is required. The method is demonstrated for
positron emission tomography (PET) data at different noise
levels, and delivers near-optimal reconstructions (in terms
of reconstruction error) without any knowledge of the
ground truth, nor any form of training data.

Index Terms— Image reconstruction, inverse problems,
emission tomography, regularisation, hyperparameter
selection, bootstrap methods.

I. INTRODUCTION

ITERATIVE image reconstruction and parameter estima-
tion methods are often compromised by the noise present

Manuscript received September 13, 2019; revised November 22,
2019; accepted November 24, 2019. Date of publication January 14,
2020; date of current version June 1, 2020. This work was supported
in part by the Engineering and Physical Sciences Research Council
(EPSRC) [EP/M020142/1], and in part by the Wellcome/EPSRC Centre
for Medical Engineering [WT 203148/Z/16/Z]. (Corresponding author:
Andrew J. Reader.)

The authors are with the School of Biomedical Engineering and Imag-
ing Sciences, King’s College London, King’s Health Partners, St Thomas’
Hospital, London SE1 7EH, U.K. (e-mail: andrew.reader@kcl.ac.uk).

According to the EPSRC’s policy framework on research data, figures,
data, and example source code supporting this study are openly available
at DOI: 10.5281/zenodo.3553741.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMI.2019.2956878

in the raw measured data, and so regularisation of some
form is usually required. Maximum likelihood (ML) para-
meter estimation, such as image reconstruction for emission
tomography (ET) data, is an important example of this [1],
[2] among many. While ML has been a theoretically motivated
approach to ET image reconstruction and has benefits in terms
of accurate noise modelling of the raw data and use of an
accurate system model, it is hampered by overfitting of the
noisy data. To avoid overfitting, there have been three main
approaches proposed in the iterative ET image reconstruction
literature. The first approach is simply to stop the iterative
process early before excessive levels of noise manifest in
the images. However, while noise is successfully limited, the
problem of selecting how many iterations to use arises, as well
as spatially-variant convergence, which can give misleading
results and a lack of definition as to what has been optimised
during the reconstruction. A second approach is to apply
post-reconstruction smoothing to remove noise, but again one
needs to choose the level of smoothing, and there is once again
a lack of definition as to what has been optimised. Thirdly,
regularisation can be included in the objective function in order
to compensate for noise in a theoretically-justified manner.
This can be achieved through maximum a posteriori (MAP)
(also known as penalised likelihood) methods, which introduce
an extra term in the reconstruction objective function to coun-
teract image noise [1], and also via reparameterisation methods
that use alternative basis functions (e.g. [3]–[5]). In both cases
though, the user is still required to select hyperparameters
to control the level of regularisation, either in the form of
penalty strengths for MAP methods, or through the number
of iterations and the basis-function design parameters for the
basis function approaches.

A further weakness of traditional noise-compensation
and regularisation methods is that the optimum level of
regularisation is dependent on the noise level within the data,
i.e. noisier datasets require higher levels of regularisation.
In some contexts, such as ET imaging, the level of noise is
highly variable due to practical limitations. Using historical or
empirical regularisation levels in these contexts can therefore
lead to sub-optimal parameter estimates, reducing the amount
of useful information available from a given acquired dataset.

There has therefore been a long-standing need for an image
reconstruction framework which a) does not require the user to
select hyperparameters, b) does not overfit the data (resulting
in erratic, noisy reconstructed images), and c) does not underfit
the data (resulting in overly smooth, biased reconstructions
lacking in detail).
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Previous work targeting this need includes cross-validation,
which is an effective method for model selection, but its
use in ET image reconstruction thus far has been very
limited. The first main attempt was overly simple—whereby
cross-validation was merely used as a stopping criterion [6].
This leaves the results with spatially-variant convergence
issues characteristic of early termination methods, and
furthermore provides no assurance of optimality of the
reconstructions. Hence this first attempt at including
cross-validation in ET reconstruction not only lacked any form
of model selection (which is the usual goal of cross validation)
but also lacked any ability to account for spatially-variant
convergence. Another proposed method for hyperparameter
selection is the use of L-curves [7]. However, this requires
many experimental reconstructions with different choices of
regularisation hyperparameter followed by a selection of the
corner of the L-curve—amounting to a large computational
burden of many reconstructions and a degree of user
specification in finding the corner of the L-curve. More
recently, Zhang et al [8] proposed a more advanced method
based on cross-validation, however this method also requires
complete reconstructions for each user preselected choice of
hyperparameter, resulting in a computationally demanding and
imprecise grid search of the hyperparameter.

A related area of research is spatially-adaptive
regularisation, which encourages certain characteristics
of the reconstructed image to be more homogeneous
throughout the field-of-view by taking into account the
spatially-variant trade-off between resolution and noise that
occurs in regularised tomographic image reconstruction.
For example, previous research has attempted to produce
spatially-invariant image resolution when using a penalised
image reconstruction [9]. Using a similar methodology, other
work has focused on providing spatially-invariant noise
levels [10], [11]. However, despite adjusting the level of
regularisation spatially to influence image characteristics,
these methods still require the overall level of regularisation
to be provided by the user [10], resulting in the possibility of
over- or under-regularisation if sub-optimal levels are chosen.

The novel proposal of this work is to use one (or optionally
more) bootstrap replicates of the measured data, generated just
once before reconstruction, in order to find a precise hyperpa-
rameter for regularisation automatically “on-the-fly” during the
iterative image reconstruction process. The advantages are that
the reconstruction method a) only requires user specification
of the type of penalty or prior, b) obviates the need to select
any values or ranges for the hyperparameters, c) obviates
the need to carry out multiple complete reconstructions for
a limited preselected set of candidate hyperparameter values.
Furthermore, the method not only provides precise hyperpara-
meter values, but is also more computationally efficient than
previous exhaustive methods for hyperparameter selection,
since it just performs one iterative image reconstruction
procedure, requiring update steps based on one or more fixed
bootstrapped replicates of the data. Note that in this present
work we are only tackling the problem of regularisation for
noise compensation, rather than for underdetermined systems,
which would remain for potential future work.

The structure of this paper is as follows. In Section II,
the theory behind the proposed method is presented, followed
in Section III by a description of example implementations for
ET image reconstruction. In Sections IV and V the proposed
method is applied to a 2D simulation study and real 3D data
respectively, with comparison to conventional reconstruction
methods. The results and implications of these experiments
are discussed in Section VI, with conclusions in Section VII.

II. THEORY

Image reconstruction aims to estimate a vector of
object-representation parameters θ (e.g. voxel intensities for
an image) given a vector of measured data m, which for ET
can be regarded as a list of counts for various measurement
elements (e.g. sinogram bins). The MAP objective function
for image reconstruction can be written as

�MAP(θ) = �ML(θ; m) − β R(θ) (1)

where �ML(θ; m) is the likelihood of the parameter vector θ

given the measured data m, R(·) is some regularising penalty
function in terms of the parameters of interest and β is a
hyperparameter that controls the strength of the regularisation.
In general, more than one regularisation hyperparameter can
be used, and the method proposed here can be applied to such
cases, but for simplicity this work will focus on the most
common case of just one hyperparameter.

The strength of the regularisation in (1) is a very
important consideration. If β is too high, the reconstructed
image is over-regularised, over-compensating for the noise
present in the data, resulting in overly-biased images lacking
detail. In contrast, if β is too low, the noise reduction is
insufficient and images can be difficult to interpret with
potentially misleading features. This work proposes a novel,
bootstrap-based method for finding β with precision during
the iterative reconstruction process, based on modelling the
mean of an ensemble of noisy reconstructions, as will be
described below. The method has no recourse to any previously
learned or empirically determined selection mechanism, and
does not need multiple reconstructions to be performed for
different hyperparameters.

For iterative image reconstruction methods, the image
update for seeking the maximum of (1) is:

θ (k+1) = U(θ (k); m) (2)

where θ (k) denotes the image estimate at iteration k,
and U is an update formula whose form depends on the
objective function and optimisation algorithm. A conventional
choice for U in ET is the expectation maximisation (EM)
algorithm [12], for progression towards the ML estimate.

For the general MAP image reconstruction case with a fixed
regularisation strength of β, the update step can be written as:

θ (k+1) = Uβ(θ (k); m). (3)

Using this definition, the unregularised image update based
on fidelity to the measured data only is

θ (k+1)
meas = Uβ=0(θ

(k); m). (4)
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For many algorithms, the regularised image update can be
rewritten as a function of the unregularised image update,
given a fixed value of β. In effect, this is a noise-compensation
update:

θ (k+1) = Fβ

(
θ (k+1)

meas

)
. (5)

Again, the exact form of Fβ(·) depends on the regulariser and
optimisation algorithm used. In this work we require Fβ(·) to
be found from an algorithm which is known to converge to the
MAP estimate, for a fixed β. Below we will show an explicit
example for the regularising function considered in this work.

A. Ensemble-Mean Optimised Regularisation

We first hypothetically consider a large set, or ensemble,
of independent noisy data realisations, each obtained for
exactly the same object in the scanner field of view, and
acquired for exactly the same period of time, such that each
has approximately the same number of counts as contained in
the actual measured data vector m. For each of the datasets
in this ensemble, it would be possible to find an unregularised
update via (4), such as the EM update. We would therefore
have a set of unregularised updates, from which the ensemble
mean of all noisy updates can be found. Clearly, this mean of
all the updates will be noise free as the number of datasets
in the ensemble tends to infinity, and therefore (in the context
of completely sampled ET data) this mean update would be a
highly desirable goal for any iterative reconstruction algorithm.

In the proposed method, we seek to estimate the
regularisation hyperparameter β such that the regularised
update of the parameter vector given by (5) matches the
ensemble mean of the set of unregularised updates. Of course,
in practice, we only have one measured dataset m, and so
it is not possible to know the ensemble mean of the set
of unregularised updates. Instead, we propose modelling this
situation via bootstrapping. Specifically, we model the desired
ensemble mean simply by the unregularised update of the
single measured dataset (4), and we model the unregularised
noisy update by an unregularised update based on a bootstrap
resampled replicate of the measured data (mboot):

θ
(k+1)
boot = Uβ=0(θ

(k); mboot). (6)

We then seek the value of β which will map this model of
the unregularised update (obtained from bootstrapped data) to
match the model of the ensemble mean (given simply by the
unregularised update from the original measured data). This
means that at iteration k, we find two provisional updates:
one update according to (4), and then also an update of the
parameter vector using bootstrapped data according to (6).

Hence we propose fitting the bootstrap update of the
image given by (6) to the conventional unregularised update
given by (4) via optimisation of the hyperparameter(s) of
the regularisation noise-compensation operator Fβ(·). Having
found the optimal hyperparameters through this model,
these same hyperparameters can be applied to the standard
unregularised image update (4), to obtain a noise-compensated
iterative update of the image (5). This update is an estimate

Fig. 1. Illustration of the principles of the method. Applying an unregu-
larised update to θ (k) using the measured data gives θ

(k+1)
meas , and using the

bootstrapped data gives θ
(k+1)
boot . The update from measured data is used

as a model of the mean of an ensemble of noisy updates, and the update
from bootstrapped data is a model of an example noisy update. The
bootstrap-optimised regularisation method therefore seeks a β which
best fits the bootstrap image to the measured data image, using a given
regularisation function Fβ . Once found, the value can be used in the
processing of the measured data update, so as to regularise the update
and obtain θ (k+1).

of the unknown ensemble mean of numerous updates based
on independent noisy acquired datasets.

Fitting an update from bootstrapped data to the update found
from the measured data can be achieved by optimisation of
any of the numerous possible objective functions, to give what
this work will refer to as an ensemble-mean objective function
(EMOF), C . This objective could be, for example, a distance
measure to minimise, or a likelihood to maximise, and in this
work the former is used. The optimum β value at a given
iteration in the reconstruction process, denoted β

(k)
opt, is given

by:
β

(k)
opt = arg min

β
C

(
θ (k+1)

meas , Fβ

(
θ

(k+1)
boot

))
. (7)

In (7) the goal is to find the optimal hyperparameter βopt for
the noise-compensation operator Fβ(·) which when applied
to the bootstrap update leads to an image that best fits the
conventional update (Figure 1).

There are many possible options for functions to use
as the EMOF in (7), including simple �p-norms or the
Kullback-Leibler divergence as is used in nested EM for
dynamic PET image reconstruction [13]. In this work we
use the �2-norm for C , corresponding to a simple Gaussian
log-likelihood, which has the benefit of robustness when values
close to zero arise.

B. Hyperparameter Fitting

In what follows, it will be helpful to consider the spatial
frequency content of the updated image estimate θ (k+1).
We will proceed with two postulates. The first is based
on the properties of the Fourier transform and the
Riemann-Lebesgue lemma: the noise-free component of



2166 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 39, NO. 6, JUNE 2020

θ (k+1) has spatial-frequency representation coefficients
which tend to decrease with increasing spatial frequency.
The second postulate is that the noise component of θ (k+1)

has spatial-frequency representation coefficients which
either remain approximately constant for all frequencies
(white noise), or which increase with increasing spatial
frequency (arising from the iterative reconstruction operator
progressively amplifying the higher spatial frequencies
in order to counteract the decaying modulation transfer
function of the imaging system, or more generally, its
decaying singular value spectrum). With these postulates,
the signal to noise ratio (SNR) in the spatial frequency
domain therefore decreases with higher spatial frequencies.
This is an almost ubiquitous assumption throughout all the
ET literature, and is the unfailing experience in practice
(e.g. [14]). Now, we can regard the regularisation strength
β as controlling the roll-off, or even cut-off, in spatial
frequencies present in the regularised image update. The
purpose of (7) is to find the best β that controls this
roll-off in spatial frequencies to just the right level, so as
to diminish the coefficients for spatial frequencies which
are noise dominated. Clearly, it is the noise-dominated
spatial frequencies which result in a discrepancy between
the unregularised update θ (k+1)

meas and the regularised

update Fβ

(
θ

(k+1)
boot

)
. If no noise were present in the

measured m (effectively infinite counts), then there would be
no discrepancy between the updates θ (k+1)

meas and θ
(k+1)
boot .

If we try to minimise C in (7) when all spatial frequencies
are present in both θ (k+1)

meas and Fβ

(
θ

(k+1)
boot

)
we can immediately

see that only a small, sub-optimal, value of β will be found.
This is because θ (k+1)

meas will contain all spatial frequencies,
including the possibly noise dominated high spatial frequen-
cies. Using this as the target for the EMOF will mean that β
cannot be as large as it may need to be, as if β attenuates
the high spatial frequencies in θ

(k+1)
boot then these diminished

values (potentially close to zero) will be a cause of mismatch
with θ (k+1)

meas , which retains all its high frequency components.
Therefore it is necessary, initially, to eliminate the higher

spatial frequencies from consideration when seeking β, and
only gradually to include them once β has first been given
opportunity to be as large as is necessary to compensate
for noise at the lower spatial frequencies first. Here we
suggest two ways of achieving this, and in this work we
proceed with the second of the two suggestions. The first
proposal is to systematically consider a series of differently
smoothed updates, and find the largest value of β, for any of
those smoothing levels, which is required in order to best fit
Fβ

(
θ

(k+1)
boot

)
to θ (k+1)

meas . However, this approach will be slow, and
requires a search over different smoothing levels. The second
proposal is to impose an over-regularisation scheme early on
in the series of iterative updates, which is gradually reduced,
while constantly searching for, and keeping as a baseline,
the maximum value of beta that is found necessary to fit
Fβ

(
θ

(k+1)
boot

)
to θ (k+1)

meas .
It is clear that for early iterations of an algorithm which

performs simultaneous updates of all pixels/voxels (e.g. the
EM algorithm), whereby only the lower spatial frequencies
are being recovered, only relatively small values of βopt

are required, as the SNR is usually at its highest for the
lower spatial frequencies. As iterations continue, and as
the over-regularisation is reduced in order to allow higher
spatial frequencies to be recovered, then larger values of βopt
are found necessary, as the SNR is poorer for these higher
frequencies. Larger βopt values are found with increasing
iterations and decreasing over-regularisation, but only up
to a certain level of over-regularisation. As the level of
over-regularisation diminishes, and as more iterations are
considered, so more and more high spatial frequencies
components are recovered in the reconstructed image update
θ (k+1). Now it is clear, based on the postulate that spectral
SNR is a decreasing function of frequency, that as more
high frequencies are permitted to be recovered, so the
level of noise apparent in the reconstructed image will
increase. Just as mentioned earlier, if we try to minimise
C in (7) when all these spatial frequencies are present
we can immediately see only a small value of βopt will
be found, as larger values of β for Fβ eliminate higher
spatial frequencies components from θ

(k+1)
boot , causing

greater discrepancy with θ (k+1)
meas , which retains all its high

frequency components.
Therefore, with increasing iterations, and with decreasing

over-regularisation we eventually observe a decrease in
the βopt, down to a fixed, stable value. The final value of

βopt corresponds to the best fit of Fβ

(
θ

(k+1)
boot

)
to θ (k+1)

meas
when all spatial frequencies are under consideration, which
as explained already, will not be a good fit. So we propose
using the largest βopt that was found, denoted βuse, as this
corresponds to just the right amount of roll-off/cut-off in
spatial frequencies before the above phenomenon occurs,
whereby inclusion of more spatial frequencies only increases
the discrepancy between Fβ

(
θ

(k+1)
boot

)
and θ (k+1)

meas .

β(k)
use = max

({
β

(1)
opt, . . . , β

(k)
opt

})
. (8)

This seeks the largest possible β which can fit Fβ

(
θ

(k+1)
boot

)
to θ (k+1)

meas , corresponding to the highest possible roll-off/cut-off
frequency which can match these two updates.

C. Over-Regularisation Cooling Schedule

As discussed above, an imposed over-regularisation is
initially required to ensure the best βopt is found. This
over-regularisation needs to be gradually reduced, to allow
more spatial frequencies to be considered in the optimisation
process. The over-regularisation is given by a factor which
is gradually decreased (cooled) with increasing iterations,
allowing gradual progression towards the case of finally
allowing only the fitted level of regularisation βuse to be
applied. Many cooling schemes are possible, and the one used
here is:

β
(k)
cool = β(k)

use + λ(k)β
(k)
opt, (9)

where λ(k) is the level of over-regularisation at iteration k,
given by the following decay formula

λ(k) = λ(0)exp

(
− k

N

)
, (10)
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Algorithm 1 Algorithm for Bootstrap-Optimised Regularised
Iterative Image Reconstruction
Input: Measured data m, unregularised iterative update

formula, Uβ=0(θ
(k); m), regularisation/denoising function

Fβ(·)
Output: Reconstructed image θ (maxIter)

Initialisation: Set the initial image estimate θ (0) to a
uniform image, the cooling initialisation λ(0), the cooling
constant N , and the maximum number of iterations maxIter
such that maxIter is at least 3-4 times N ;

1: Generate a bootstrap replicate of the measured sinogram,
mboot;

2: for k = 1 to maxIter do
3: Calculate the standard image update according to (4);
4: Calculate the bootstrap image update according to (6);
5: Find the bootstrap-optimised regularisation hyperparame-

ter β
(k)
opt according to (7);

6: Find the maximum βopt value to give β
(k)
use according to

(8);
7: Calculate the current over-regularisation factor, λ(k),

according to (10);
8: Calculate β

(k)
cool according to (9);

9: Apply this hyperparameter value to get the next overall
image update according to: θ (k+1) = F

β
(k)
cool

(
θ (k+1)

meas

)
;

10: end for
11: return θ (maxIter)

such that βcool tends to βuse. Here λ(0) is the initialisation
of the over-regularisation factor (referred to as the cooling
initialisation) and N is the cooling constant. It is important
to note that provided λ(0) and N are both sufficiently large,
then they need never be changed or adapted, but can be left as
constants for all manner of noise levels under consideration,
as will be demonstrated in Section IV.

Note further that while βcool can be orders of magnitude
greater than βuse in early iterations, the cooling scheme is
designed to ensure that at higher iterations the reconstruction
performs iterations with the fixed value of βuse found by (8).
This finally ensures the optimisation of (1) with a fixed β
value selected during the reconstruction.

D. Summary

At a given iterative update, after finding βopt by (7),
updating βuse by (8), and finding the current βcool by (9),
the final step of the method is to use βcool in the regularised
image update:

θ (k+1) = F
β

(k)
cool

(
θ (k+1)

meas

)
(11)

The overall bootstrap-optimised regularised image reconstruc-
tion algorithm is summarised in Algorithm 1.

III. EXAMPLE IMPLEMENTATION

The proposed method should be applicable to any
regularised ET image reconstruction or parameter estimation
problem for which noise is a concern. Here we present

its use for positron emission tomography (PET) for two
example regularisation functions: the quadratic penalty with
and without guidance information.

In PET, the most common unregularised iterative image
reconstruction algorithm is the maximum likelihood
expectation maximisation (MLEM) algorithm [12]. This
algorithm is obtained by considering the Poisson noise of
the measured PET data, and aims to maximise the Poisson
log-likelihood of the parameters of interest given the measured
data. Given an image estimate θ (k) and the measured data
vector m, the MLEM update is written as

θ
(k+1)
MLEM = UMLEM(θ (k); m)

= θ (k)

AT 1
AT m

Aθ (k) + b

(12)

where A is the system matrix, b is an estimate of the mean
background (scatters and randoms), and 1 denotes a vector
of ones equal in length to m. Multiplication and division of
two vectors (where vectors are always identified through use
of a lower-case font in bold italics in this work) are taken
to be element-wise, whereas for matrix-vector multiplications,
conventional notation is preserved. This notation follows the
proposal of Barrett et al [15].

A. Generating a Bootstrap Replicate

Depending on whether the measured data are in
list-mode or sinogram form, there is more than one way of
obtaining a bootstrap replicate mboot of emission tomography
data m (e.g. see [16]–[18]). Here we assume a list-mode
form, which can easily be generated from binned sinograms
as follows: each sinogram bin is examined in turn, and if the
bin holds one count or more, then the index of that bin is
copied to a list according to the number of counts in the
bin. For example, if sinogram bin number i has n counts,
then index i is copied n times into the output list. The end
result is a list of bin indices with as many entries as there
are counts in the sinogram data. This list is then uniformly
and randomly sampled from, with replacement, to generate a
bootstrapped list of sinogram bin indices. From this, output
bootstrapped sinogram data can be formed by just reading
each index from the bootstrap list and incrementing the count
in the corresponding output sinogram index. For example,
sinogram bin index i will occur in our bootstrapped list n′
times, resulting in the i th bin of mboot containing n′ counts.

B. Bootstrap-Optimised Quadratic Penalty

The proposed method is demonstrated using the well-known
example of a quadratic penalty, as used numerous times
throughout the ET image reconstruction literature (e.g. [19],
[20]). In this case, the regularisation function for (1) is given
by

RQ(θ) = 1

4

J∑
j=1

∑
l∈N j

w j l
(
θ j − θl

)2 (13)

where w j l is a weight specifying the strength of regularisation
between voxel j and a given voxel l in the neighbourhood of j ,
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denoted N j . The quadratic penalty discourages images with
neighbourhood differences, as these are assumed to correspond
to noise. However, the use of weights allows specification
of which pairs of voxels are permitted to be different in
value (e.g. edges in the image), by reducing the penalty for
differences between such pairs (e.g. [21]).

A robust algorithm for solving this MAP image
reconstruction problem in PET is the modified EM algorithm,
as proposed by De Pierro [22]. The MAPEM update formula
in this case, as rewritten by [23], is:

Uβ(θ (k); m) = 2θ
(k+1)
MLEM

ξ
(k+1)
β +

√(
ξ

(k+1)
β

)2 + 4βνθ
(k+1)
MLEM

(14)

where the image θ
(k+1)
MLEM is the standard MLEM update as

defined in (12), the elements of the vector ν are given by

ν j =
∑

l∈N j
w j l

s j
, (15)

where s = AT 1, and

ξ
(k+1)
β = 1 − βνθ (k+1)

reg , (16)

where θ (k+1)
reg is a smoothed image given by:

θ
(k+1)
j,reg = 1

2
∑

l∈N j
w j l

∑
l∈N j

w j l

(
θ

(k)
l + θ

(k)
j

)
. (17)

To adapt the modified EM to include the proposed
bootstrap-optimised regularisation we define the unregularised
standard and bootstrap image updates as

θ (k+1)
meas = UMLEM(θ (k); m) (18a)

θ
(k+1)
boot = UMLEM(θ (k); mboot). (18b)

The denoising operator Fβ(·) is given by (14) so that

Fβ

(
θ

(k+1)
boot

)
= 2θ

(k+1)
boot

ξ
(k+1)
β +

√(
ξ

(k+1)
β

)2 + 4βνθ
(k+1)
boot

. (19)

β
(k)
opt is the value of β which when used in (19) produces the

result closest to θ (k+1)
meas , as required by the EMOF (7). This is

a 1D optimisation problem given by

β
(k)
opt = arg min

β

∥∥∥θ (k+1)
meas − Fβ

(
θ

(k+1)
boot

)∥∥∥2

2
. (20)

Given the form of Fβ(·) in (19), it is difficult (perhaps
impossible) to find a closed-form solution for β

(k)
opt . For

this reason we use standard iterative algorithms for this
1D optimisation, described in the relevant sections below.
Once β

(k)
opt is found, the values of β

(k)
use and β

(k)
cool are obtained

by (8) and (9), and β
(k)
cool is applied to θ (k+1)

meas to obtain θ (k+1).

IV. 2D SIMULATION STUDIES

To evaluate the performance of the proposed
bootstrap-optimised reconstruction method, 2D simulation
studies using PET image reconstruction were conducted.
These studies were designed to test the method with a range
of noise levels, and compare results with conventional image
reconstruction. Data generation and reconstruction were
performed in MATLAB 2017a (The MathWorks, Natick,
MA, USA), with the Radon transform and its adjoint used
for projection and backprojection respectively.

A. Experimental Methods

1) Data Simulation: A 2D digital ground truth PET
radiotracer distribution based on the BigBrain phantom [24],
[25] was generated in a 643×643 pixel grid corresponding to
a pixel side length of 400μm. The distribution was designed
to mimic the uptake of [18F]fluorodeoxyglucose (FDG).
Simulated data were generated by first introducing blurring
in the object space by convolution with a Gaussian kernel of
4.5mm FWHM to model the intrinsic limited spatial resolution
in PET, and then projecting the blurred phantom into a
sinogram containing 180 azimuthal angles and 185 radial bins
(size 2mm). Randoms and scatters were simulated by uniform
and blurred (convolution of true projections with a Gaussian
kernel of 10 bins standard deviation) sinograms respectively,
with a scatter fraction of 20% and a randoms fraction of 20%.
Three different scaling factors were applied to this projected
data in order to generate three different mean count levels in
the sinogram, prior to the introduction of Poisson noise into
each sinogram bin. These scaling factors were chosen so as to
obtain datasets containing 3.5 × 105, 3.5 × 106 and 3.5 × 107

mean total counts in each 2D sinogram. These mean total
counts corresponded to low, mid, and high count acquisitions.
Hence a broad range of count levels were considered, covering
the case where substantial regularisation is required, through
to the case where only a very low level of regularisation is
needed.

2) Reconstruction Methods: Two regularisation functions
were considered in the 2D simulation study: an unweighted
quadratic penalty and a weighted quadratic penalty guided
through use of side information (hereafter referred to as
the guided quadratic penalty). Both penalties used 5 × 5
neighbourhoods. The unweighted quadratic penalty was
implemented as a weighted quadratic penalty with all
weights w j l set to 1. To calculate weights for the guided
quadratic penalty we used the Bowsher method, in which the B
most similar neighbouring pixels for each pixel in the guiding
image are found, and the corresponding weights w j l are set
to 1, with all other w j l = 0 [26]–[28]. Similarity was based on
the squared difference between pixel values, and the B = 10
most similar pairings were kept per pixel, with similarities
calculated from a noise-free, scatter- and randoms-free,
non-resolution-degraded filtered backprojection (FBP)
reconstruction as the guiding image (Figure 2(a))
(corresponding to a case where reliable high-quality
side information is available). Note that with these definitions
for w j l , the two penalties have differing intrinsic scales
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since
∑

j w j l = 25 for the unweighted quadratic penalty and∑
j w j l = B = 10 for the guided quadratic penalty. While

this is expected to affect the magnitude of the β values, it is
not expected to affect the proposed method which is designed
to automatically scale β.

There are two values that need to be set for the
bootstrap-optimised framework described in this work: the
cooling initialisation parameter λ(0) and the smoothing cooling
constant N . We found that N = 100 iterations and λ(0) = 1000
gave good results in this work, although the proposed method
was observed to perform well for any suitably large values
of these parameters at the cost of increased reconstruction
time, as demonstrated later. Furthermore, a mask was defined
in which the image-space EMOF was optimised, to ignore
surrounding empty regions when optimising β values. This
mask was calculated by segmenting the FBP reconstruction
of the data as shown in Figure 2(a) into ‘head’ and
‘background’ regions, using a single threshold followed by
morphological operations to fill any remaining holes. The
1D EMOF optimisation in (20) was performed with the
MATLAB constrained optimisation function fmincon (using
the documented interior point algorithm with scaled objective
function and constraints). The analytic derivative of (20)
was also provided to improve robustness, the Hessian was
approximated by finite-difference methods, and the conjugate
gradient method was used to solve the subproblems.

Each simulated dataset was reconstructed using
conventional unregularised MLEM, the bootstrap-optimised
unweighted quadratic penalty, the bootstrap-optimised guided
quadratic penalty, and standard regularised reconstructions
(with fixed β values). Resolution modelling using a 3mm
FWHM Gaussian kernel was included, and all reconstructions
were run for 1000 iterations to ensure convergence of the
regularised methods. Reconstructed images had a pixel
size of 2 × 2mm2. It is important to note that with the
cooling scheme used, a fixed final β is found for each
bootstrap-optimised regularised method, resulting in a
conventional convergent regularised reconstruction in every
aspect except for how the regularisation strength was set.

The bootstrap replicate of the noisy measured data, required
by the proposed method, was found through the method
previously described in section III.

3) Image Evaluation: The reconstructed images were
evaluated over S = 10 noise realisations, found to be sufficient
for the below metrics which are evaluated over the large
masked region of the images, defined as �. The average root
mean square error (RMSE) was calculated by

RMSE =
√

SD2 + Bias2 (21)

with the bias given by

Bias =

√√√√√√√√

∑
j∈�

(
θ̄

(k)
j − θRef

j

)2

∑
j∈�

(
θRef

j

)2 (22)

Fig. 2. (a) The noise-, scatter-, and randoms- free non-resolution
degraded FBP reference image used for RMSE calculation.
(b-d) RMSE as a function of iteration for the three count levels for
conventional unregularised MLEM image reconstruction, as well as
for the bootstrap-optimised implementations of MAPEM using the
unweighted quadratic penalty and the guided quadratic penalty. For
each penalty, λ(0) and N (see (10)) were held constant for all count
levels, indicating that the proposed methodology is robust over a wide
range of noise levels. RMSE is also shown for standard MAPEM
reconstructions using the β values provided by the proposed method,
demonstrating that the method is converging to the fixed-β solution at
high iteration numbers.

and the standard deviation (SD) given by

SD =

√√√√√√√√
1

S

S∑
s=1

∑
j∈�

(
θ̄

(k)
j − θ

(s,k)
j

)2

∑
j∈�

(
θRef

j

)2 . (23)

Here, θ̄
(k)
j is the mean reconstructed value for voxel j , found

by taking the average of the S noisy realisations and θRef is
a reference image for error calculation. The noise-free, scatter
and randoms free, non-resolution-degraded FBP reconstruction
was used as the reference image in all cases (Figure 2(a)).

B. Results

Figure 2(b-d) shows the reconstruction RMSE as a
function of iteration for conventional unregularised
MLEM reconstructions at each noise level, alongside
the corresponding results for the two bootstrap-optimised
regularisation methods. While MLEM RMSE levels increase
at high iterations due to the progressive fitting of noise
in the data, the bootstrap-optimised regularised methods
stabilise to a fixed level of reconstruction error. Furthermore,
these error levels are either comparable to, or superior
to, the minimum RMSE across all iterations achieved by
MLEM. Specifically, the unguided quadratic penalty provides
error levels similar to the optimum MLEM error levels and
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Fig. 3. Progression of βopt and βuse as a function of iteration for the
bootstrap-optimised reconstructions. βcool is omitted for clarity, and by
definition approaches βuse at high iterations. Shaded error bars show
the range for each value (over 10 independent noise realisations), and
solid lines show the mean values. Note how βopt peaks before dropping
to settle at a low value at higher iterations, in accordance with the theory
(Section II.B).

the guided quadratic penalty outperforms even the optimum
MLEM reconstruction, particularly in the low-count case. This
occurs due to the guidance providing additional information
to the reconstruction that is not contained in the data, allowing
a performance improvement compared to using the data alone
with assumptions of isotropic smoothness. Figure 2(b-d)
also shows RMSE as a function of iteration for the case
where a standard MAPEM reconstruction is performed
using the final value of β provided by the proposed method
(i.e. β = β

(end)
cool ). For all noise levels the RMSE at

1000 iterations using bootstrap optimisation is the same as
that obtained by using the fixed-β approach, demonstrating
that the proposed method converged successfully. This
reinforces the validity of the final-iteration image provided
by the proposed method, without the need to restart the
reconstruction with the obtained β value.

Figure 3 shows the values of βopt and βuse as a function
of iteration for each penalty and count level. As well as the
mean values (solid lines), the range of values found across
the 10 noisy realisations are also displayed. The progression
of the optimised β values exhibit a similar behaviour in all
cases. As count levels increase, the bootstrap-optimised values
of βopt correspondingly reduce, reflecting the fact that less
regularisation is required for higher quality PET data.

Figure 4 shows RMSE as a function of
systematically-chosen β values for conventional regularised
reconstructions. The RMSE for MLEM is also shown, for

Fig. 4. End-iteration RMSE as a function of β for each penalty function,
with the bootstrap-optimised RMSE values shown for comparison. MLEM
RMSE values at both the end iteration (dot-dashed lines) and the best
iteration (dotted line) are also shown. Note the different β values required
for each penalty. The bootstrap-optimised reconstructions achieve recon-
struction error levels comparable to a grid search for all noise levels
considered, but crucially, unlike a grid search, without knowledge of the
ground truth and with use of the very same fixed values of λ(0) and N for
all cases.

both the end iteration and the optimum iteration number
(where lowest RMSE is found), and also the RMSE obtained
using the bootstrap-optimised reconstruction methods. For
each method at each noise level the bootstrap-optimised
reconstruction provides error levels comparable to the
optimum conventional regularised reconstructions. The range
and mean of the bootstrap-optimised β values β

(end)
use over the

10 noisy realisations of m are also shown for comparison.
To verify the use of one-off fixed values for N and λ(0)

irrespective of noise level, sinograms at the three different
noise levels were reconstructed with a range of values for N
and λ(0), and the final β

(end)
cool recorded (Figure 5). Just the one

same bootstrap realisation for a given noise level was used for
each reconstruction, and the number of iterations was set to
10N to ensure stabilisation of the found β values. The results
demonstrate a plateau in the β

(end)
cool values with sufficiently

high N and λ(0), although with a slight tendency to higher β
values at higher values of N and λ(0). Nonetheless, it can
be seen that the fixed values of N and λ(0) used previously
(100 iterations and 1000 respectively, shown by dashed vertical
lines in Figure 5) were high enough to provide β values close
to the maxima in all cases.
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Fig. 5. Final β values provided by the proposed bootstrap-optimised
reconstruction method (β(end)

cool ) vs N and λ(0). For sufficiently high values
of N and λ(0) the endpoint β-value is approximately constant. Vertical
dashed lines show the values used in Figures 2–4; these lie within the
approximately constant regions on the graphs, showing that these values
are suitable for both penalty functions and all tested noise levels.

As only one single bootstrapped dataset mboot has been
used for computational efficiency, robustness of the method
for different bootstrapped samples was investigated. We ran
10 reconstructions for a single identical noisy realisation of m
using the unweighted quadratic penalty, with just the random
seed for bootstrap generation changed in each of the 10 runs.
All 3 count levels were considered. For the high count case
the results in Figure 6 show that there is in fact potential
to have bootstrap samples that deliver a zero value for βuse,
for the case where extremely small values of β are needed.
For the lower count cases this issue is not encountered.
To investigate how the possible pitfall of a zero βuse value
could be counteracted, we ran a single reconstruction with
an extension of the proposed method: instead of calculat-
ing β

(k)
opt based on a single mboot, we calculated 10 provisional

β
(k)
opt values based on 10 different bootstrap samples. We then

chose the maximum as β
(k)
opt . This extension of the method

to include multiple bootstraps in the same reconstruction
results in endpoint β values found for all count levels that
are in very good agreement with the grid-searched optimal
values (Figure 4), and counteracts the potential pitfall of a
zero β value.

Fig. 6. (a)-(c) Development of β for 10 different reconstructions from
a same single noisy dataset, where in each case a different bootstrap
sample was used (each line is a single reconstruction). In the high count
case, (c), some bootstrap samples result in a zero value of β, which is
potentially problematic. (d)-(f) By including the 10 bootstraps in a single
reconstruction and selecting, for example, the largest β value found from
all the bootstraps, the possibility of finding a zero β for the high count
case is avoided.

In terms of visual assessment, Figure 7 shows that the
bootstrap-optimised reconstructions are similar to the con-
ventional regularised reconstructions when using the optimal
β values from Figure 4. Figure 7 also includes the MLEM
reconstructions at optimal iterations, and end-iteration MLEM
reconstructions, as useful reference points. It is again crucial
to note that selection of these optimal reconstructions depends
on knowing the ground truth, whereas the proposed method
delivers comparable results in the absence of the ground
truth.

V. APPLICATION TO REAL DATA

Finally, the proposed bootstrap-optimised regularised
reconstruction methodology was applied to a real [18F]FDG
brain PET dataset (Figure 8). The data were acquired from
an Alzheimer’s disease patient scanned using a Siemens
Biograph mMR PET- magnetic resonance (MR) scanner
(Siemens Healthcare, Erlangen, Germany). The patient was
injected with 229.1MBq of [18F]FDG 70min prior to a
30min acquisition, resulting in a total of 563 million
recorded prompt counts. PET attenuation maps were pro-
duced using the default ultrashort echo time MR sequence.
Randoms and scatters were estimated from the list-mode
data using the vendor-supplied e7-tools software (Siemens
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Fig. 7. Example reconstructed images for each count level used in the 2D simulation studies. For each of the two quadratic penalties, images
are shown at 1000 iterations using either the optimum β value given by the ground truth grid search found in Figure 4, or the bootstrap-optimised
reconstruction (which does not need the ground truth). MLEM reconstructions at the optimal iterations (as found in Figure 2), and the end-iteration
MLEM reconstructions are also shown. The bootstrap-optimised regularisation method yields images qualitatively similar to the grid search results,
reflecting the similar RMSE values observed in Figure 4, but entirely in absence of knowledge of the ground truth, as would be the case in practice.

Fig. 8. The patient PET-MR dataset used for the real data investigation.
(a) The T1-weighted MR image resampled to the 3D PET image grid, (b) a
slice of the 3D [��F]FDG image, reconstructed with 1000 iterations of
MLEM followed by a 4mm FHWM Gaussian smooth, (c) a representative
direct sinogram from the 3D [��F]FDG data acquisition (m), and (d) an
example bootstrapped replicate of the same direct sinogram (mboot). Red
boxes in (c) and (d) show details of the sinograms for comparison.

Healthcare, Knoxville, TN, USA). The dataset also included a
simultaneously acquired T1-weighted MR image that can be
used for anatomically-guided reconstruction [Figure 8(a)].

A. Experimental Methods

The key benefit of the proposed method is its robustness
to varying levels of statistical noise. Therefore, the original,
full-counts patient dataset was used to generate additional
datasets with reduced numbers of counts by selecting counts
from the sinogram with a fixed probability, to obtain different
noise levels for testing. For example, by retaining counts with
a 10% probability, a 10%-counts Poisson-noisy dataset can
be generated. Using this method, high, mid, and low counts
datasets were produced, containing on average 100%, 10%,
and 1% of the original counts. The scatters and randoms esti-
mates were scaled accordingly rather than being recalculated
at each noise level.

These real datasets were then reconstructed with 1000 iter-
ations of the proposed method, using both the unweighted
and guided (by Bowsher-weights) quadratic penalties. Both
methods used a neighbourhood size of 3 × 3 × 3 and the
Bowsher weights were calculated from the T1-weighted MR
image using the B = 7 most similar neighbours for each voxel.
The values of λ(0) and N were 1000 and 50 iterations respec-
tively. Compared to the 2D simulation case, N was reduced
since 3D reconstructions are known to converge more quickly
than 2D reconstructions. The 1D EMOF optimisation (20)
was performed using the interior point algorithm and also
the ‘trust region reflective’ algorithm from the MATLAB
function fmincon. The best β value from the two solvers
was used as β

(k)
opt. In this case each algorithm was also

provided with the gradient of the EMOF (differentiating (20)
with respect to β). The attenuation maps, which contain
information about the object location, were used to define
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Fig. 9. Real data PET image reconstructions using MLEM, 4mm-smoothed MLEM and the bootstrap-optimised unweighted quadratic penalty
method. Standard unweighted quadratically-penalised MAPEM reconstructions using fixed β values are also shown. As counts decrease, MLEM
becomes noisy even with a (clinically typical) 4mm Gaussian smooth. Using standard MAPEM requires an appropriate counts-dependent selection
of β. In contrast, the proposed bootstrap-optimised MAPEM provides good noise reduction at all count levels, without any specification of penalty
strength. β(end)

cool values for the bootstrap-optimised reconstructions were (from high to low counts) 18.4, 1028, and 49514.

the mask in which the EMOF should be optimised. For
the brain data used in these tests, the EMOF mask was
calculated by performing a binary thresholding on the
vendor-provided attenuation maps, followed by morphological
operations to close and fill any remaining holes in the
mask. Reconstructions included PSF-modelling with a 3mm
FWHM Gaussian kernel, and the reconstructed voxel size was
2.08626 × 2.08626 × 2.03125mm3.

For comparison purposes, MAPEM reconstructions with
three fixed β values were also performed for each penalty to
demonstrate the range of penalty strengths required over the
three count levels investigated. For the unweighted quadratic
penalty these three β values were 10, 1000 and 50000 and for
the guided quadratic penalty they were 10, 1000 and 100000.

B. Results

The reconstructed real data images using the unweighted
quadratic penalty are shown in Figure 9. As expected, noise in
the MLEM reconstructions increases with decreasing counts,
to the point where a standard 4mm smooth becomes insuffi-
cient at 1% counts. The MAPEM reconstructions with dif-
ferent β values show the risks of using a fixed β value
in terms of variation of optimal penalty strength at dif-
ferent noise levels. For example, when using β = 50000
(which performs well at 1% counts) the 100% counts dataset
is highly over-regularised, losing all detail completely. The
bootstrap-optimised reconstruction method, however, adap-
tively determines the penalty strength on-the-fly during the
iterative reconstruction and so can appropriately regularise the

reconstructed images at any noise level. This leads to reduced
regularisation at low noise levels (hence retaining detail), and
increased regularisation at high noise levels (hence reducing
potentially misleading details arising from noise). Similar
results are observed when considering the guided quadratic
penalty results (Figure 10), where again the penalty strength
for the very low count case is appropriately amplified.

VI. DISCUSSION

This work proposes a general, unsupervised optimised regu-
larised image reconstruction methodology applicable to many
iterative methods, which automatically selects an appropriate
value of the penalty strength β using bootstrap methods to
model the ensemble mean. The method can in principle be
extended to select other hyperparameters related to regulari-
sation. Figures 2 and 3 show that the proposed method, for
the two implemented penalty functions, progresses towards
fixed β values, providing stable reconstructions at high iter-
ation numbers. Provided a convergent MAPEM algorithmic
framework is selected, then the final outcome of the proposed
method is correspondingly a convergent regularised recon-
struction method. In the current work, both a guided and also
an unweighted quadratic penalty were used to demonstrate
the methodology. While the proposed method performed very
well in both cases, better RMSE values were obtained when
using the guided quadratic penalty (particularly at lower SNR
data), but of course such a penalty is wholly reliant on
the availability of high-quality side information. Nonetheless,
the use of bootstrap-optimised regularisation highlighted the
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Fig. 10. Real data PET image reconstructions using the bootstrap-optimised guided quadratic penalty method. As seen in Figure 9, the bootstrap-
optimised MAPEM method automatically selects suitable β values at each noise level. β(end)

cool values for the bootstrap-optimised reconstructions
were (from high to low counts) 52.6, 3371, and 111635.

benefit of high-quality side information, and furthermore since
it provides optimised reconstructions for both penalties, it is
easier to observe the lower reconstruction error obtained when
side information is available and included (Figure 2). In this
manner, bootstrap-optimised regularisation may serve as a
research tool to allow a more objective comparison between
penalties, allowing each regularisation to perform at or near
its optimal point, potentially even assisting in choosing which
penalty to use.

The reconstruction errors of the images were similar to those
obtained by regularised reconstructions using an exhaustive
grid search to find β (Figure 4), which, however, also needed
knowledge of the ground truth. The key benefit of the proposed
methodology is that it operates on-the-fly, without supervision,
to deliver precise levels of regularisation without an exhaustive
search, and without knowledge of the ground truth.

The use of a single bootstrap replicate can lead to β values
of 0 when using very high-statistics PET data (which requires
only very small values of β), as was observed in Figure 6(c).
Robustness of the proposed method can be improved through
use of multiple bootstrap replicates. Figure 6 demonstrated
that the potential pitfall of a zero β could thus be avoided by
considering updates from multiple bootstrap replicates.

One possible present limitation of the methodology is the
number of iterations involved (e.g. 1000 iterations were used
here to ensure the endpoint β value had settled and that the
reconstruction had time to converge for that final β value).
Therefore future work could consider acceleration possibilities
for the proposed method.

Another area of potential future work is to assess any
possibility of object, scanner or ET-modality dependence
of the initial over-regularisation and cooling scheme. The

very strong over-regularisation and slow cooling scheme
presently employed means that early iterations of the method
should always be sufficiently over-regularised irrespective
of the object, count level, scanner or ET modality. This
could be verified by more extensive testing over a range
of representative objects and ET modalities, potentially even
with a view to reducing or automatically adapting the ini-
tial over-regularisation and cooling scheme, thereby reducing
reconstruction times. However, the emphasis in the present
work was to provide an approach that should prove robust to
many different ET imaging scenarios.

When applied to an anecdotal real 3D PET dataset,
the bootstrap-optimised methodology performed extremely
well. The methodology adaptively selected β values for
three very different count levels, delivering images of good
visual quality, whether using the unweighted quadratic penalty
(Figure 9) or the guided quadratic penalty with Bowsher
weights (Figure 10). In addition, there is scope to explore using
the proposed bootstrap-based methodology to perform on-the-
fly penalty-selection, for example selecting between incor-
porating guidance information or using an isotropic penalty,
according to both the statistical quality of the PET data and
the quality of the guidance information.

While the aim of this present work is to remove the reliance
of regularisation methods on user-selected hyperparameters,
it is nonetheless recognised that in some contexts it may be
desirable to preserve a level of interactivity, e.g. to select the
appearance or texture of residual noise in the images. Our
proposed framework, in its present form, still leaves the choice
of penalty (function R in (1)) to the user. Hence there is still
scope for interactivity by selecting a penalty term that models
the desired end-point image characteristics. This could also
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include the use of spatially-adaptive regularisation to encour-
age spatially uniform noise levels or resolution [9]–[11].
The proposed bootstrap methodology would still find the
appropriate level of regularisation for that choice of
penalty.

The proposed bootstrap-optimised regularisation has poten-
tial application to many image reconstruction, restoration, and
parameter estimation problems that suffer from high levels
of noise. For instance, an application outside of medical
imaging is reducing shot noise in natural or astronomical
image processing. This has been the focus of previous work
in automated hyperparameter estimation (e.g. [29]). Using the
methodology proposed here to estimate and compensate for the
intrinsic variance of the data on-the-fly could be a powerful
tool in such contexts.

VII. CONCLUSIONS

This work proposes the use of one or more bootstrap
replicates of a noisy measured dataset to find an optimised
level of regularisation for the reconstruction of that dataset.
This is achieved by finding the regularisation hyperpara-
meter β that best fits an image update using the boot-
strapped data to an image update using the original data.
This value of β corresponds to estimating the noise-free
ensemble mean of numerous noisy updates. By choosing
the maximum level of regularisation encountered during the
entire sequence of iterative updates, the strongest necessary
regularisation is selected for the final stages of the iterative
reconstruction.

The results of 2D PET simulation studies showed great
promise for the methodology, with reconstruction error levels
and image appearance in good agreement with RMSE-optimal
regularised reconstructions (found with an exhaustive hyper-
parameter search and knowledge of the ground truth). The
method was then successfully applied to real 3D PET data,
demonstrating ability to adaptively select appropriate β values
depending on the noise level, providing images of excellent
visual quality.

In summary, a hyperparameter-free regularised image recon-
struction methodology is proposed, simplifying the practical
use of regularisation.
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